87 research outputs found

    Indifference valuation in incomplete binomial models

    Get PDF
    Abstract The indifference valuation problem in incomplete binomial models is analyzed. The model is more general than the ones studied so far, because the stochastic factor, which generates the market incompleteness, may affect the transition propabilities and/or the values of the traded asset as well as the claim's payoff. Two pricing algorithms are constructed which use, respectively, the minimal martingale and the minimal entropy measures. We study in detail the interplay among the different kinds of market incompleteness, the pricing measures and the price functionals. The dependence of the prices on the choice of the trading horizon is discussed. The family of "almost complete" (reduced) binomial models is also studied. It is shown that the two measures and the associated price functionals coincide, and that the effects of the horizon choice dissipate

    Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

    Full text link
    We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Sa\'{a}-Requejo (2000) and of Bj\"{o}rk and Slinko (2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque, Papanicolaou, and Sircar (2000).Comment: Keywords: Pricing derivative securities, incomplete markets, Sharpe ratio, correlated assets, stochastic volatility, non-linear partial differential equations, good deal bound

    Quadratic BSDEs driven by a continuous martingale and application to utility maximization problem

    Full text link
    In this paper, we study a class of quadratic Backward Stochastic Differential Equations (BSDEs) which arises naturally when studying the problem of utility maximization with portfolio constraints. We first establish existence and uniqueness results for such BSDEs and then, we give an application to the utility maximization problem. Three cases of utility functions will be discussed: the exponential, power and logarithmic ones

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387

    In memoriam: Mark H. A. Davis and his contributions to mathematical finance

    No full text
    This Special Issue of Mathematical Finance celebrates the memory of Mark H. A. Davis, one of the founding editors of the journal, and his numerous contributions to mathematical finance

    Portfolio choice under dynamic investment performance criteria

    No full text
    A new dynamic criterion for measuring the performance of self-financing investment strategies is introduced. To this aim, a family of stochastic processes defined on [0, ∞) and indexed by a wealth argument is used. Optimality is associated with their martingale property along the optimal wealth trajectory. The optimal portfolios are constructed via stochastic feedback controls that are functionally related to differential constraints of fast diffusion type. A multi-asset Ito-type incomplete market model is used.Portfolio choice, Dynamic investment performance, Self-financing investment strategies,
    corecore